skip to main content


Search for: All records

Creators/Authors contains: "Hartley, Iain P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Tall deciduous shrubs are increasing in range, size and cover across much of the Arctic, a process commonly assumed to increase carbon (C) storage. Major advances in remote sensing have increased our ability to monitor changes aboveground, improving quantification and understanding of arctic greening. However, the vast majority of C in the Arctic is stored in soils, where changes are more uncertain. Scope We present pilot data to argue that shrub expansion will cause changes in rhizosphere processes, including the development of new mycorrhizal associations that have the potential to promote soil C losses that substantially exceed C gains in plant biomass. However, current observations are limited in their spatial extent, and mechanistic understanding is still developing. Extending measurements across different regions and tundra types would greatly increase our ability to predict the biogeochemical consequences of arctic vegetation change, and we present a simple method that would allow such data to be collected. Conclusions Shrub expansion in the Arctic could promote substantial soil C losses that are unlikely to be offset by increases in plant biomass. However, confidence in this prediction is limited by a lack of information on how soil C stocks vary between contrasting Arctic vegetation communities; this needs to be addressed urgently. 
    more » « less
  2. Abstract

    The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2or CH4to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,90014C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil14C‐CO2emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2emissions derived from older sources following recent thaw. The age of CO2and CH4emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future14C studies in the permafrost region.

     
    more » « less